

LISCO Products Catalogue

LISCO PRODUCTS CATALOGUE

CONSTRUCTIONS
NEED المنيان أساس
FOUNDATION
W W W.LIBYANSTEEL.COM

CONTENTS

- 1 INTRODUCTION
- 2 LISCO MILESTONES
- 3 LISCO PRODUCTION & AUXILIARY FACILITIES
- 4 QUALITY CONTROL
- 5 AWARDS & CERTIFICATIONS
- 6 SEMI-FINISHED PRODUCTS
- 7 FINISHED PRODUCTS

INTRODUCTION

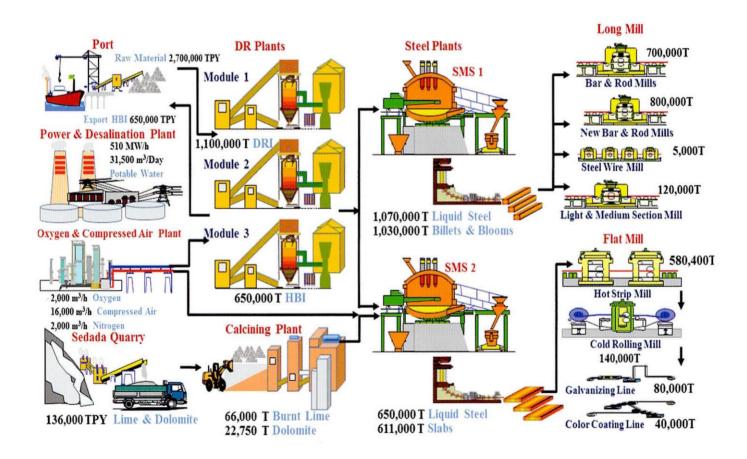
Since 1989 the Libyan Iron & Steel Co. (LISCO) has produced 22 million tonnes of finished steel products which had been marketed in the domestic, regional & international markets ,the products has been recognized for its high quality, competitive price & suitability for end use.

This Catalogue describes LISCO main products namely technical specifications and end uses in addition to production methods & technologies used , the products cover wide range of applications including structural steels where bars , rods , sections & wire products are used , where as flat products are used in a diverse down stream industries namely transportation vehicles, white goods ,machinery , hollow sections, pipes , tubes & gas cylinders

This is the 3rd edition of LISCO main products catalogue which contains many changes to the technical specifications namely unification of European standards under EN, and the issue of the relevant EN 10025 relevant to most LISCO products which is also amended in 2004 from one issue to 6 parts.

The EN 10025 issue comprises 6 parts covering carbon steel and HSLA steels & themo-mechnically treated steels& cold forming steels.

A number of EN specifications were also canceled namely EN 10113, EN 10155 & EN 10137 and became part of the new EN 10025 (6 parts), the hot dip galvanized steel strip EN specifications EN 10142 & EN 10147 were made into one specification EN 10346, Also color coated steel strip specifications 10169-1,10169-2,10169-3 were made into one specification EN 10169.


New products are also listed in this catalogue including TMT rebars sizes 8 to 40 mm produced in the new Bar Mill 2, and IPE sections & new section sizes.

LISCO MILESTONES

- 1979 Laying the Foundation Stone for Misrata Steel Complex (MSC).
- 1988 Start of commercial operation of first MSC plant (Bar & Rod mill).
- 1989 Official inauguration of MSC.
- 1991 Commercial operation of MSC Plants & declaring LISCO a public company
- 1997 Commercial operation of first expansion project (HBI Module).
- 1998 Commercial operation of new rod Mill, Galvanizing & Color Coating Lines
- 2004 Preparing the feasibility studies for the MP expansion projects.
- 2005 Start of SMS-1 expansion project.
- 2006 Updating the Feasibility Studies for expansion Master Plan.
- 2008 Start implementation of Phase 1 of MP expansion projects.
- 2012 Restarting production of LISCO plants after Feb 2011 events
- 2014 Start Commissioning of MP projects (NG Treatment Station)
- 2017 Start Commissioning of MP projects (new bar mill, RO plant)
- 2018 start production of new bar mill 2

LISCO PRODUCTION & AUXILIARY FACILITIES

QUALITY CONTROL

The Quality Control department is the entity responsible for managing all quality assurance & quality control tasks through its organizational functions and facilities, which comprises:

AREA LABORATORIES

- Steel Melt Shops & DR Plants Laboratories

Chemical Analysis & Physical Tests of molten steel ,billets ,blooms ,slabs, sponge iron ,HBI, lime stone & dolomite , burnt lime & dolomite, & Byproducts

- Long Mills Laboratories

For testing products of Bar & Rod Mill 1, Bar Mill 2, Section Mill, Wire Mill. Where the following tests are conducted: Sample preparation, Mechanical testing (Tensile, bend & hardness) & metallography tests.

- Flat Mills Laboratories

For product testing of hot strip mill, cold strip mill, hot dip-galvanizing & color coating lines comprising:

Sample preparation, mechanical testing of sheet products (Tensile, bend, hardness, cupping, drawing), Metallography test, galvanized & coated products coating layer tests, Chemical tests of pickling acid & emulsion

QUALITY CONTROL

CENTRAL LABORATORY

Extensive testing of all raw materials, steel products & failure analysis tests of products & machine parts ,lts also where issuance of Quality & Test Certificates & test machines calibration activities are conducted.

- Chemical & physical tests of steels, iron ore, lime stone & dolomite, burnt lime & dolomite & byproducts.
- Ferro-alloys, refractory materials.
- Mechanical testing of steel products (Tensile test, bend test, Impact test, cupping tests, surface roughness).
- Metallography tests .
- Hardness tests.
- Heat treatment.
- Non-Destructive testing .

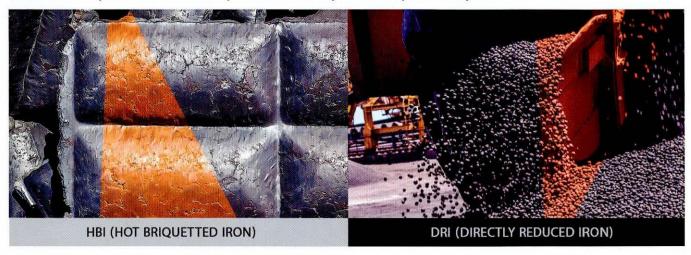
AWARDS & CERTIFICATIONS

Since the start of commercial operation and the introduction of LISCO products to regional & international steel markets in recognition of its exceptional product quality LISCO has won many prestigious international prizes and awards from renowned international institutions:

- International Golden Star Award for Quality in 1999
- International New Millennium Award for Commercial Excellence 2001
- International Golden Millennium Award for Quality Excellency 2002
- ISO 9001 Certification TOM in 2002/2008
- Latin America Technical Award for Quality & Best Trademark 2002
- The 14th International Award for Industrial &AuxiliaryStructures 2002
- International New Millennium Award for Best Trademark 2001
- International Royal Award for Exceptional Performance & Excellence in Quality 2003
- ISO 14001 Certification for Environmental management 2008
- ISO 18001 Certification for Industrial health & safety management 2009
- Global Green Award for Environmental Achievement & Sustainability Practices 2014
- Exceptional Leadership in Crisis Award 2017

LISCO AWARDS & CERTIFICATIONS

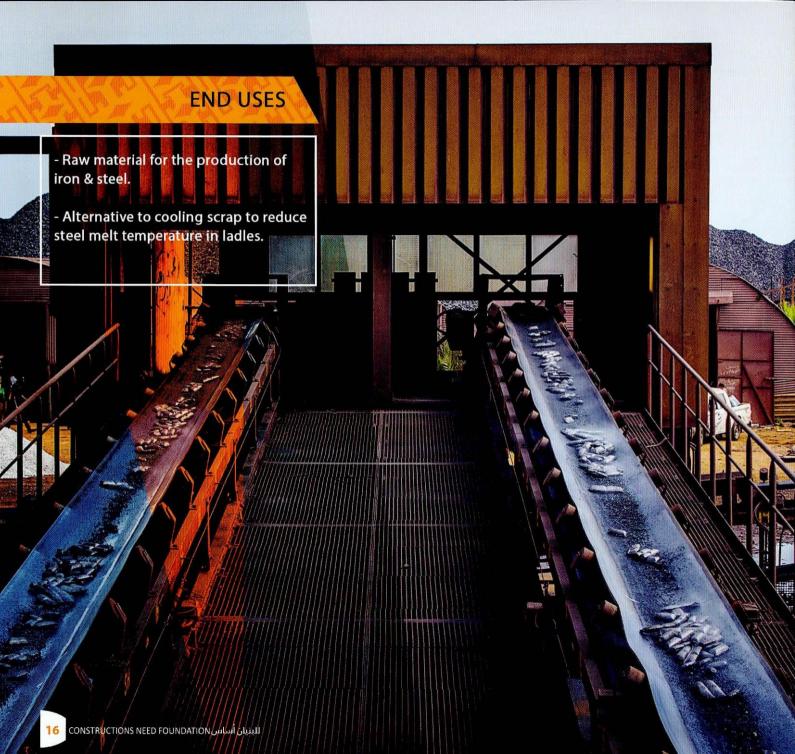




SEMI-FINISHED PRODUCTS

The sponge iron is produced in two forms, DRI (Directly reduced iron) pellets & HBI (Hot briquetted iron) briquettes by Midrex direct reduction technology using high quality hematite iron ore, the sponge iron is the main input material for the production of liquid steel by the EAF process.

PRODUCTION TECHNOLOGY


Midrex Direct Reduction Process

MAIN CONTRACTOR

Main Contractor: Models 1&2 (Produce DRI Pellets) the Germen Co. Kurf & the Austrian Co. Voist Alpine

Model 3 (Produce HBI)the Austrian Co. Voist Alpine

الشركة الليبية الحديد والصلب Bareau RON AND STEEL COMPANY

TECHNICAL SPECIFICATION OF SPONGE IRON

TYPE OF SPONGE IRON	% Fe Total Min	% Fe Metallic Min	% Metalli- zation min	% C AVE	% P MAX	% S MAX	% Gangue MAX (SiO2 + Al2O3 + CaO + MgO)	SIZE MM	SPECIFIC GRAVITY G/CM3	BULK DENSITY T/M3
DRI	91	84	92	1.50	0.045	0.03	5	8 -16	3.4 – 3.6	1.6 - 1.8
НВІ	91	84	92	0.85	0.045	0.03	5	32×48× 106	4.9 - 5.3	2.6 - 2.8

SEMI-FINISHED PRODUCTS

These semis are produced in the two steel melt shops 1 & 2, where billets & blooms are produced in SMS1 and the slabs are produced in the SMS2 They are the main input materials for the rod,bar, section & hot strip mills, and cover wide range of steel grades namely low, medium and high C steels in addition to HSLA steels.

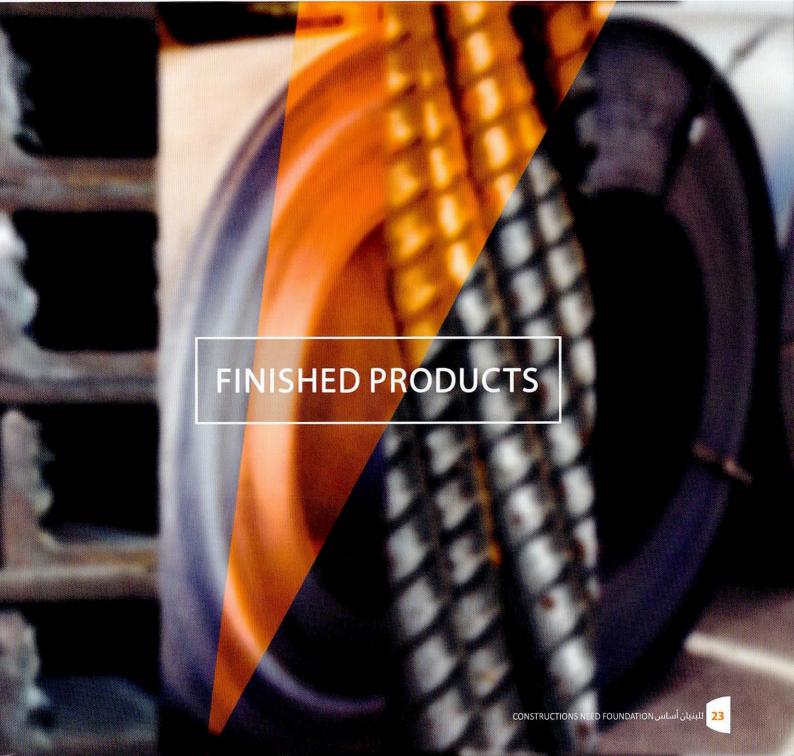
PRODUCTION TECHNOLOGY


Electric Arc Furnace (EAF) & Continuous Casting Process

MAIN CONTRACTOR

SMS 1 German Korf Co.& Austrian Voist Alpine Co

SMS 2 German Krup Co. & Austrian Voist Alpine Co



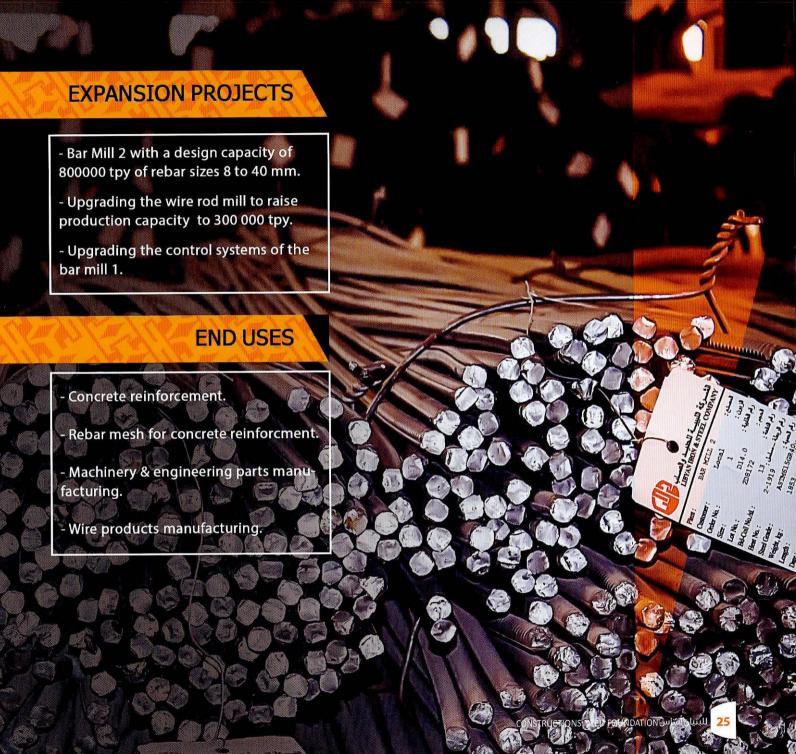
TECHNICAL SPECIFICATIONS

SEMIS	SECTION DIMENSIONS (MM)	LENGTH (M)	WT./M (T/M)	SPECIFICATIONS	DIMENSIONAL DEVIATION	TWIST (MAX)	STRAIGHT- NESS (MM) MAX	DIAGONAL DEVIATION
BILLETS	122 × 122 130 × 130	4 - 12	0.115	-AISI 1008 - 1074 -HSLA -EN 10025(1-6)	SECTION AREA ± 2 % LENGTH ± 50	1°/M OR 8°/12M	5 / M OR 30 / 12M	2 %
BLOOMS	150 × 150 175 × 175 200 × 200	4 - 12	0.177 0.240 0.314	-AISI 1008 - 1074 -HSLA -EN 10025 (1-6)	SECTION AREA ± 2 % LENGTH ± 50	1°/M OR 8°/12M	5 /M	2 %
SLABS	THICKNESS 160 & 190 WIDTH 630 – 1550	6 – 12	0.8 -2.3	-AISI 1008 - 1023 - HSLA	LENGTH ± 50 WIDTH ± 5 T ± 2.5 BULGE ± 2.0	-	50 /6M	2.5 %

BARS & RODS

These products comprises round & deformed bars & rods ,bar sizes range from 8 to 40 mm , rods ranging from 5.5 to 12 mm.

Most of these products are used for structural purposes in concrete reinforcement and general engineering applications & wire products, these products classified according to their mechanical properties (Low, medium & High strength) and cover low, medium, high carbon & low alloy steel grades.


PRODUCTION PROCESS

- Bars are produced by hot rolling in a tandem mill in 3 stages, then air cooling on cooling bed, whereas the Bar Mill2 has TMT zone where bars are subjected to high cooling rate with water jets to produce high strength rebars (temper-core).
- Rods are produced by hot rolling in 4 stages roughing ,intermediate , finishing & mono-block,followed by water cooling zone then coil forming by laying head where rod rings are laid on roller conveyor (Stelmor type) to be air cooled by air blower.

STEEL REBAR IDENTIFICATION MARK

TECHNICAL SPECIFICATIONS

Bars & Rods for Structural Purposes

CHEWICAL COMPOSITION OF THE CHANGES PROPERTIES (MIN)										
TECHNICAL SPECIFICATION	SIZES	C				% 0				
	(MM)	С	Si	Mn	Р	S	N/MM2	N/MM2	% EL	SPECIFICATIONS
AISI 1008-1018 ASTM A 510 EN 10025 S 235 : EN 16120-2	5.5 - 12	0.20	0.20	0.60	0.04	0.04	235	340	25	EN 10017 ISO 16124
ASTM A615 G 40 :	6 - 12	0.35	0.30	0.90	0.05	0.05	300	400	16	
RB 300 : ISO 6935	16 - 40	0.35	0.30	1.20	0.05	0.05	300	400	16	
RB 400 :ISO 6935-2	6 - 12	0.35	0.30	1.00	0.05	0.05	400	550	14	DIN 488-2 EN 10080
G 60 : ASTM A 615	12 - 40	0.40	0.40	1.50	0.05	0.05	420	620	9	ASTM A615
460 : BS 4449/1997 500 : DIN 488-1 G 60 : ASTM A706	8 - 40	0.22	0.40	1.50	0.05	0.05	500	550	10	
	AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 G 40: RB 300: ISO 6935 RB 400: ISO 6935-2 G 60: ASTM A 615 460: BS 4449/1997 500: DIN 488-1	AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 G 40: RB 300: ISO 6935 G 60: ASTM A 615 C 60: ASTM A 615 A60: BS 4449/1997 500: DIN 488-1 8 - 40	AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 G 40: RB 300: ISO 6935 RB 400:ISO 6935-2 G 60: ASTM A 615 12 - 40 0.40 460: BS 4449/1997 500: DIN 488-1 8 - 40 0.22	TECHNICAL SIZES (MM) AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 G 40: RB 300: ISO 6935 G 60: ASTM A 615 C Si (LADLE C Si (LADLE	TECHNICAL SIZES (MM) AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 G 40: RB 300: ISO 6935 G 60: ASTM A 615 G 60: ASTM A 615 12 - 40 0.20 0.20 0.60 0.60 0.60 0.60 0.70 0	TECHNICAL SIZES (MM) C Si Mn P AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 C 40: RB 300: ISO 6935 R8 400: ISO 6935-2 G 60: ASTM A 615 12 - 40 0.40 0.40 1.50 0.05	AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 G 40: RB 300: ISO 6935 RB 400: ISO 6935-2 G 60: ASTM A 615 12 - 40 0.40 0.40 0.40 0.40 0.55 0.56 0.60 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05	TECHNICAL SPECIFICATION SIZES (MM) C Si Mn P S N/MM2 AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 C 40: RB 300: ISO 6935 16 - 40 0.35 0.30 0.90 0.05 0.05 300 RB 400: ISO 6935-2 6 - 12 0.35 0.30 1.20 0.05 0.05 300 C G 60: ASTM A 615 12 - 40 0.40 0.40 1.50 0.05 0.05 300 460: BS 4449/1997 500: DIN 488-1 8 - 40 0.22 0.40 1.50 0.05 0.05 500	TECHNICAL SPECIFICATION (MM) C SI Mn P S N/MM2 TS N/MM2 AISI 1008-1018 ASTM A 510 EN 10025 S 235: EN 16120-2 ASTM A615 G 40: RB 300: ISO 6935 16 - 40 0.35 0.30 0.90 0.05 0.05 300 400 RB 400: ISO 6935-2 6 - 12 0.35 0.30 1.20 0.05 0.05 300 400 RB 400: ISO 6935-2 6 - 12 0.35 0.30 1.00 0.05 0.05 300 400 C 60: ASTM A 615 12 - 40 0.40 0.40 1.50 0.05 0.05 300 500 550	TECHNICAL SIZES (MM) C SI Mn P S YS N/MM2 N/MM2 % EL AISI 1008-1018 ASTM A 510 EN 10025 S 235 : EN 16120-2 ASTM A615 G 40 : RB 300 : ISO 6935 16 - 40 0.35 0.30 0.90 0.05 0.05 300 400 16 RB 400 :ISO 6935-2 6 - 12 0.35 0.30 1.20 0.05 0.05 300 400 16 C 60 : ASTM A 615 12 - 40 0.40 0.40 1.50 0.05 0.05 500 550 10

TECHNICAL SPECIFICATIONS

Bars & Rods for Engineering Purposes

STEEL TYPE				CHEMICA			Same and	MECHANICAL PROPERTIES (MIN)			
	TECHNICAL SPECIFICATION	SIZES (MM)	(%) C	ADLE AI	Mn	MAX) P	MAX S	YS N/MM2	TS N/MM2	% EL	DIMENSIONAL SPECIFICATIONS
MILD STEEL	-EN 10025-2: E295 - AISI :1023 -1030		0.30	0.30	1.00	0.05	0.04	295	470	19	
MEDIUM CARBON STEEL	-EN 10025-2: E336 - AISI :1035-1045	6-40	0.50	0.30	1.20	0.05	0.04	336	570	15	EN 10060
HIGH CARBON STEEL	-EN 10025-2:E360 -AISI :1050-1070		0.70	0.30	1.20	0.05	0.04	360	670	10	

Note: Bar length 6-12 m

WIRE PRODUCTS

These products comprises 3 categories black, annealed ,galvanized & coated wires.the black wire is the input material for production of all wire products (heat treated ,galvanized & coated wires).

The wire products are initially drawn from low carbon steel rod in stages through drawing dies then heat treated by process annealing in batch annealing furnaces to soften the structure.

PRODUCTION PROCESS

Wire drawing of rods in wire drawing mill using oil lubricated dies to produce black wire / Heat treatment by batch annealing process of wire coils / Hot dip galvanizing / PVC coated wire

MAIN CONTRACTOR

Italian Co. Techint

MAIN FEATURES - Good mechanical properties & surface quality. - Wide range of end uses. - Produced from high quality steel (low Cu,Ni,Cr & P/S). **END USES** - Tying wire. - Fence wire. - Mesh baskets (Gabion). - Wire mesh for concrete reinforcement. CONSTRUCTIONS NEED FOUNDATION للبنيان أساس 29

TECHNICAL SPECIFICATIONS

Wire Products


		MECHANICAL	PROPERTIES	SPECIFICATIONS		
PRODUCT	DIAMETER (MM)	TS N/MM2	%EL MIN	TECHNICAL	DIMENSIONAL	
BLACK WIRE	1.6 - 4.0	500 - 850	-			
ANNEALED WIRE	0.8 - 1.2			AISI 1008 - 1020 EN 10223-3	EN 10010 0	
GALVANIZED WIRE	0.8 - 4.0	350 - 500	10	EN 10244-1/2 EN 10245-1/2	EN 10218-2	
PVC COATED WIRE	1.6 - 2.5					

HOT ROLLED LIGHT & MEDIUM SECTIONS

These products cover wide range of sections (I-beams ,channels, equal angles & flats), in addition to new IPE section, these products are classified according to mechanical properties

PRODUCTION PROCESS

The sections are produced by hot rolling of billets & blooms (120 to 200 mm size section) in a cross-country type mill in 3 stages roughing, intermediate & finishing followed by natural air cooling, cutting to length then straightening.

MAIN CONTRACTOR

JAPANESE CO. KOBE STEEL

EXPANSION PROJECTS

- Installation of new universal stand to produce new section products namely IPE & additional IPN sizes.

MAIN FEATURES

- High quality steel with low impurities content (P,S).
- Good weldability.
- Diverse end use.
 - Easy to assemble, disassemble & fabricate.

END USES

- Steel Structures.
- Ship structures.
- Pedestrian bridges & crossovers.

LIALIZĂ ILLIȚĂ ILLIȚĂ ILLIȚĂ PRANTORIA PORTUNIA PORTUNIA

Section Products, Types, Dimensions & Dimensional Specifications

Section Type	Equal Angles	Channels	Bea	Flats	
	Lquai Ailgles	Chamileis	IPN	IPE	FIGUS
Section Dimensions	75×75×t (6,7,8,10) 100×100×t (8,10,12,14,16) 120×120×t (11,12,13,15)	80×45×6 100×50×6 120×55×7 140×60×7 160×65×7.5 180×70×8 200×75×8.5	100×50×4.5 120×58×5.1 140×66×5.7 160×74×6.3 180×82×6.9 200×90×7.5	100×55×4.1 120×64×4.4 140×73×4.7 160×82×5.0 180×91×5.3 200×100×5.6	100×10 175×15 200×20
Dimensional Specifications	EN 10056-2	EN 10279	EN 10024	EN 10034	EN 10058

الشركة الليبية لتحديد والصلب المركة الليبية التحديد والصلب المركة المرك

FINISHED PRODUCTS

TECHNICAL SPECIFICATIONS

Hot Rolled Sections

	Equivalent Steel Grades (EN 10@5-2)	Chemic	Chemical Composition (% Ladle Analysis)max						Mechanical Properties (min)			
Steel Grade		c	Si	Mn	P	S	N	YS N/mm2	TS N/mm2	% EI	Bend Test 180° (t)	
235	S 235 (JR,J0,J2)	0.17	0.30	0.60	0.05	0.04	0.009	235	340 / 470	24	1	
275	S 275 (JR,J0,J2)	0.21	0.30	0.90	0.05	0.04	0.009	275	410 / 560	20	2.5	
355	S 355 (JR,J0,J2)	0.21	0.50	1.5	0.05	0.04	0.009	355	340 / 630	18	3	

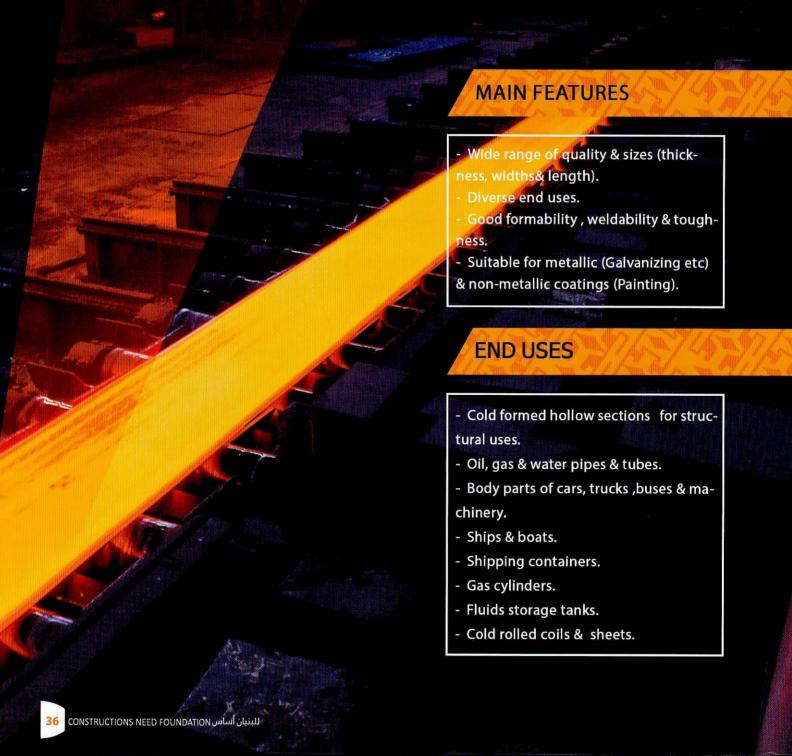
^{*}Si content by agreement with the customer, ** N content not required when N fixing elements (AI,V, Nb & Ti) are added

Note: These products are suitable for hot dip galvanizing as per EN10025 - Class 3

HOT ROLLED COILS & SHEETS

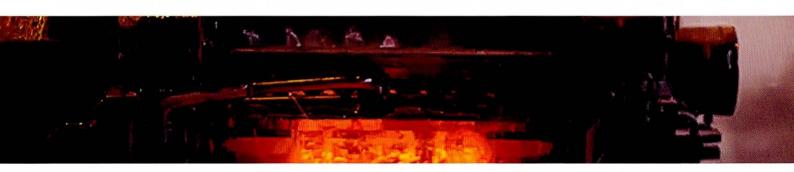
Due to the wide range of end uses of these products, they are classified according to chemical composition & mechanical properties, They comprises 3 categories as per end uses:

- Hot rolled coil & sheets for general structural purposes
- Hot rolled coil & sheets of high strength, fine grained weldable steel
- Hot rolled coil & sheets for cold forming (eg for gas cylinders & auto structural parts)


PRODUCTION PROCESS

The coils are produced by hot rolling in a semi continuous rolling mill starting with heating of the slabs to 1200 °C reheating furnaces, followed by descaling prior to rolling in 2 stages, starting with a stand reversing roughing mill where LLING IS DONE IN

rolling is done in multiple passes followed by descaling prior to entering 6 stand finishing mill, the rolled stock then water cooled to achieve the desired properties on laminar cooling roller table prior to coiling.


MAIN CONTRACTOR

Austrian Co. Voist Alpine

TYPES, DIMENSIONS & SPECIFICATIONS

Product	Thickness	Width	Length	Coil Inner	Coil Outer	Wt	Technical Specification				Tolerance	
Type	(mm)	(mm)	(mm)	Diameter (mm)	Diameter	(t)	AISI	EN	ASTM	API-5L	Specification	
Coils	2.0/12.7	600 / 1525		760		950 - 2000	14			A 570	GR.A	
Pickled Coils	2.0 / 6.0	600 / 1270			800 - 2000	12/25	1008 to 1023	EN 10026 (1-6)	A 283	GR.B X42 X46 X52	EN10051 EN10029	
Sheets	2.0/12.7	600 / 1525	1500 / 6000		_	10				X60		

LIBVANINON ARDSTEEL COMPANY

FINISHED PRODUCTS

TECHNICAL SPECIFICATIONS

- Hot Rolled Coils for General Structural Purposes **Chemical Composition**

		Chemical	Compositio	n (% Ladle	Analysis)		Equivalent
Steel Grade	C max	*Si max	Mn max	P max	S max	AI min	International Specification EN 10025-2
HS 235	0.17	0.40	0.90	0.04	0.03	0.02	S 23 5
HS 275	0.18	0.40	1.2	0.04	0.03	0.02	S 275
HS 355	0.20	0.40	1.50	0.04	0.03	0.02	S 355

For Coils intended for hot dip galvanizing: Si content ≤ 0.03%(Class 1) or 0.14%≤ Si ≤ 0.25% (Class 3)

LIEVAN IRON AND STEEL COMPANY

FINISHED PRODUCTS

TECHNICAL SPECIFICATIONS

Mechanical Properties

		*N	1echanical	Properties	5			F
Steel Grade	Yield Strength	Tensile Strength	% m		Char At Ter	py Test np°C	(J) min	Equivalent International Std
	(N/mm2) min	(N/mm2)	3mm>	3mm≤	+ 20 (JR)	(OC) 0	- 20 (J2)	EN 10025-2
HS 235	235	360-510	19	24	27	27	27	S 235
HS 275	275	430 - 580	17	21	27	27	27	S 275
HS 355	355	510 - 680	16	20	27	27	27	S 355

^{*}Samples are 90° to rolling direction

TECHNICAL SPECIFICATIONS

- Hot rolled coil & sheets of high strength, fine-grained weldable Structural steel

This type of special purpose sheets characterized by their high toughness and strength and good weldability as a result of their chemical composition (micro alloying with V& Nb) and processing method (Controlled rolling or TMT)

Chemical Com	position							Equivalent
		Cł	nemical Com _l	position (Lac	dle Analysis %	6)		International Std
Steel Grade	C max	Si max	Mn	P max	S max	Al min	Nb/V max	EN 10025-3 EN 10025-4
HS 235 FG	0.18		0.6-15					S 275 N
	0.13		0.0 15				0.05 / 0.1	S 275 M
HS 350 FG	0.20							S 355 N
	0.14	0.4	1.0 - 1.6	0.03	0.02	0.02		S 355 M
HS 420 FG	0.20							S 420 N
	0.16						0.05 / 0.15	S 420 M
HS 460 FG	0.20							S 460 N
	0.16							S 460 M

LISCO PRODUCTS CATALOGUE

TECHNICAL SPECIFICATIONS

Mechanical Properties

		*Me	chanical Properties				Equivalent
Steel Grade	Yield Strength	Tensile Strength	% El		rpy Test emp°C	(J) min	International Std EN 10025-3
	(N/mm2) min	(N/mm2)		+ 20 (JR)	(OC) 0	- 20 (J2)	EN 10025-4
HS 275 FG	275	370 - 510	24	55	47	40	S 275 N
		370 310					S 275 M
HS 355 FG	355	470 - 680	22	55	47	40	S 355 N
							S 355 M
HS 420 FG	420	520 - 680	19	55	47	40	S 420 N
							S 420 M
HS 460 FG	460	540 - 720	17	55	47	40	S 460 N
							S 460 M

^{*}Note: Test samples are longitudinal to rolling direction, Grain size number 6 min as per (EN ISO 643)

TECHNICAL SPECIFICATIONS

Hot Rolled Coil & Sheets for Deep Drawing Purposes

	Chem	ical Con	npositio	n (% La	adle An	alvsis)	Mech	nanical Propert	ties	Equivalent
Steel Grade	C max	Si max	Mn max	P max	S max	Total Al min	YS (N/mm2) max	TS (N/mm2) max	% El min	International Std
HS 10	0.10	0.03	0.40	0.04	0.03	0.02	320	420	28	EN 1011:1
HS 8	0.08	0.03	0.30	0.04	0.03		300	400	30	DD12 DD13

TECHNICAL SPECIFICATION

Hot rolled coils & Sheets of high strength steel grades for cold forming & gas cylinders

Troc Torred Cor							1881		echanical P				
Steel Grades	Cl C	nemical Si	Compo Mn	sition (9 P	% Ladle	Total Al	Others	YS (N/mm2)	TS (N/mm2)	% I mi	≣ I	Equivalent International Std	
	max	max	max	max	max	min	max	min		<3mm	≥3mm		
			13					315	390- 510	20	24		
High Strength for Cold Forming	0.12	0.40	15	0.03	0.02	0.02	Nb 0.05 V 0.15	355	430 <i>-</i> 550	19	23	EN 10149-2: S315 MC S355 MC	
Tomming			15				Ti 0.03	420	480 <i>-</i> 620	16	19	5420 MC	
Gas Cylinders	0.16	0.20	0.3-0.8	0.025	0.015	0.02	Nb	245	360- 450	26 34		EN 10120:	
steel	0.19	0.20	0.7-1.0	0.025	0.015	0.02	0.05	310	460- 550	21	28	P01,P02, P03	

ILIZAÇÃB ILIZASB ILIZAS E PRACILIZADOS PARA SON PARA STANIAN PARA STAN

FINISHED PRODUCTS

TECHNICAL SPECIFICATION

Hot Rolled Coils & Sheets for Welded Water, Oil & Gas Pipes

	C	hemical	Compo	sition (adle A	nalvsis ^o	%)	Mech	anical Properties		Equivalent
Product Type	C max	Si max	Mn max	P max	S max	Total Al min	Nb/V max	YS (N/mm2) min	TS (N/mm2) min	% El min	International Std
Water Pipes	0.17	0.3	0.90	0.04	0.03	0.02		235	360	20	-EN 10224: L235 -ASTM A53: Grade A
								245	415	22	API - 5L:
Oil & Gas Pipes	0.15	0.4	1.30	0.04	0.03	0.02	Nb	290	415	21	X46, X42 ,GB EN 10208-2: L245 MB
							0.05 V 0.15	320	435	20	L290 MB
	0.12	0.4	1.50	0.04	0.03	0.02		360	460	22	API - 5L: X52, X60 EN 10208-2:
	0.12	0.4	1.50	0.0-1	0.03	0.02		415	520	20	L360 MB L415 MB

COLD ROLLED COILS, SHEETS & SLIT STRIPS

This cold rolled flat products are characterized by their high cold formability & low carbon contents, the cold rolled coils are heat treated (Process Annealing) to impart optimum forming properties and classified according to their chemical composition and mechanical properties

PRODUCTION PROCESS

The production process comprises multiple lines:

Pickling of hot rolled coils / Cold rolling in a reversing stand / Rewinding to adjust coil tension / Batch annealing in hood type gas annealing furnace with N as seal gas / Temper mill to improve surface quality of the coil / Slitting line to longitudinally cut the coil to narrower coils / Cold shearing line to cut coils to sheets, the mill has an acid regeneration plant to recycle and treat the spent pickling line acid.

MAIN CONTRACTOR

Voist Alpine of Austria

TECHNICAL SPECIFICATION

Cold Rolled Products Types & Dimensions

Product	Thickness	Width	Length	Coll Inner	Coil Outer	Wt	Techi	nical Specifi	cation	Tolerance
Type	(mm)	(mm)	(mm)	Diameter (mm)	Diameter	(t)	AISI	EN 10130	ASTM	Specification
Coils	0.4/3.2	1270/ 6000		610	1500	10			A 619	
Sheets			1000 / 4000)	_	2-10	1006 to 1015	DC 01 DC 02 DC 03 DC 04	DQ A 620	EN 10051 EN 10140
Slit Coils	0.4 / 2.5	min80	_	610	1500				DDQ	

الشركة الليبية للحديد والماحب LIBYAN IRON AND STEE CONTANT

TECHNICAL SPECIFICATION

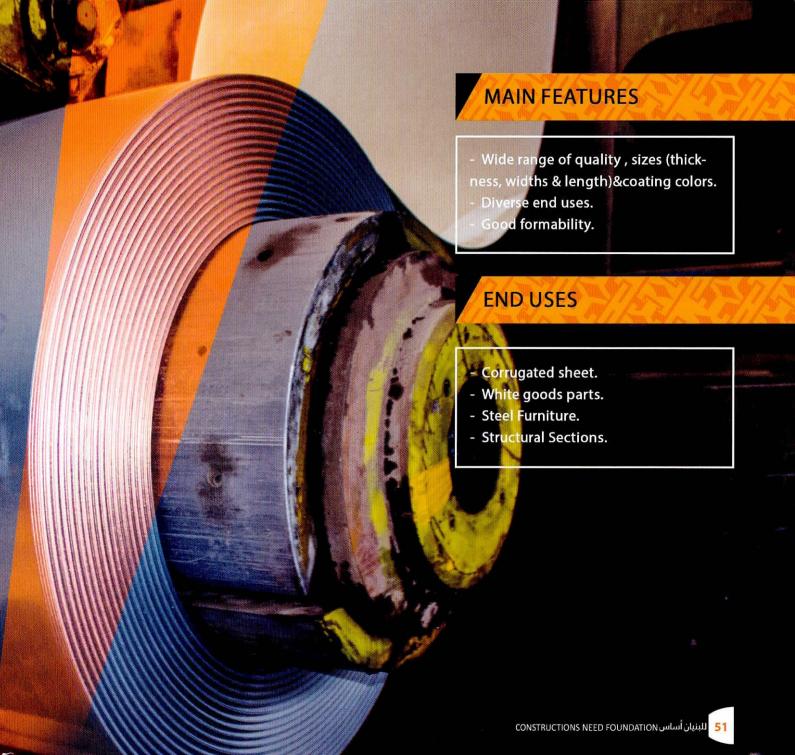
Chemical Composition & Mechanical Properties Requirements of Cold rolled Coils & Sheets

				ompos				CHORESCHER	Mecha	nical P	roper	ties	Fauriores	an stations	5380 S3630	D80610202254001	£
Product Type &				nalysis		Total	YS	TS	% m		Hard m	ness ax	100000000000000000000000000000000000000	uppi n (for	Charletin	C1980(ED) 12 (E) 2	ent Inte Std
Steel Grade	C max	Si max	Mn max	P max	S max	Al min	(N/mm2) min	(N/mm2)	GL 80mm	GL 50mm	HRB	HRN 30	0.5	1.0	1.5	2.0	Equivalent Intern Std
General Purpose CS 12	0.12	0.20	0.60	0.04	0.04	0.01	215	350 to 510	20	22	_	-	_	_	_	_	
Deep Drawing CS 10	0.10	0.03	0.30	0.04	0.04	0.02	280	270 to 410	28	30	65	60	8.8	9.8	10.5	11.1	EN 10130 EN 10139 DC 01 DC 03 DC 04
Extra Deep drawing CS 8	0.08	0.03	0.25	0.03	0.03	0.02	240	270 to 370	34	36	55	53	9.5	10.5	11	11.8	DC 04

UBAN IRON AND STEEL COMPANY

GALVANIZED & COLOR COATED COILS & SHEETS

These coated flat products are produced by hot dip galvanizing of mainly cold rolled coils followed by color coating color coated coils can also be produced directly from cold rolled coils



PRODUCTION PROCESS

The cold or pickled hot coils are first annealed in a continues annealing furnace followed by hot dipping in a molten zinc bath at 460 °C, then it can be dispatched as galvanized product or color coated in the color coating line, A chromate type protective coating is used to protect galvanized coils

MAIN CONTRACTOR

Morocco Pipe Company of Morocco by license from French Company Stein Heurtey

TYPES, DIMENSIONS & TECHNICAL SPECIFICATIONS

Product Type	Thickness (mm)	Width (mm)	Length (mm)	Coil Inner Diameter (mm)	Coil Outer Diameter	Wt (t)	Coating Wt(g/m²)	Tolerance Specification
Galvanized Coils	0.40/2.0	600 / 1270		508 or 610	1500 max	12 max	80 - 450	EN 10143
Galvanized Sheets	0.40/2.0	570 / 1270	1000 / 4000	_	<u>-</u> -	10/2 max	80-430	EN 10143

TECHNICAL SPECIFICATION

Galvanized Coils & Sheets

				Mechai	nical Prop	erties					
Product Type	Product Grade	YS (N/mm2)	TS (N/m		% EI min	Bend Test		oping T (for t in		Zinc Coating Weight (g/m2)	Equivalent International Std
		(N/111112)	(147111	112)		lest	0.5	1.0	2.0	(g)	Sta
General Structural	SG 1	min 250	500	350	18	t1				80 - 450	EN 10147: \$250GD+Z \$280GD+Z \$320GD+Z EN 10346: \$250GD+Z \$280GD+Z \$320GD+Z \$350GD+Z
Cold Forming	SG 2	max 300	420	300	26	Contac	t			80 - 350	EN 10346:
Cold Forming	SG 3	max 260	380	280	30	Contac	t 7.4	9.4	10.5	80 - 270	DX51D+Z/ZF 2D+Z/Z

TYPES, DIMENSIONS & TECHNICAL SPECIFICATIONS

Color Coated Coil & Sheets

This Pre-painted product could have a a galvanized or cold rolled substrate, there are 3 types of coating normal, plastic & Cladding

Product	Thickness	Width	Length	Coil Inner Diameter	Coil Outer	Wt	Tech	Zinc Coating		lor Coatin iickness (µ		Tolerance
Type	(mm)	(mm)	(mm)	(mm)	Diameter	(t)	Spec	Weight (g/m2)	Normal	Plastic	Clad	St
Color Coated Coils (Galvanized & non - galvanized)	0.4-1.50	600 - 1270	<u></u>	508 610	1500	12	EN 10169	80-450	.30	300	200	EN 10143
Color Coated Sheets (Galvanized & non - galvanized)	0.4-1.50	600 - 1270	1000 - 4000			2-10	EM IM IO	80-430	20-30	200-300	20	EN 10143

PRODUCT TEST CERTIFICATES

Product Test Certificates are issued by LISCO Quality Control Department as per EN 10168 for Steel Products Inspection Documents & the detailed EN 10204 for types of quality test certificates

ENQUIRIES & CONTACT

LOCAL MARKETING DEPARTMENT

local marketing@libyansteel.com

CONTACT NUMBERS

00218 51 272 47 41 00218 91 322 73 11

EXPORT SALES DEPARTMENT

fmarketing@libyansteel.com

www.libyansteel.com

CONSTRUCTIONS
NEED المناف أساس FOUNDATION

الشركة الليبية للحديد والصلب LIBYAN IRON AND STEEL COMPANY

WWW.LIBYANSTEEL.COM